Exploring Role-Based Adaptation

Sebastian Gotz and llie Savga

Department of Computer Science, Dresden University of Technp®egsmany,
{sebasti an. goetz|is13}@ril .inf.tu-dresden. de

Abstract. The adapter design pattern [1], commonly used for integration and
evolution in component-based systems, is originally describedley. In class-
based systems, the conventional realization of the pattern maps theseorole
classes. The recent appearance of mature languages suppdesaséirst order
programming constructs poses the question whether realizing this pattsstiyd

in roles offers benefits comparing to class-based realization. This papleres

the feasibility of role-based adaptation and discusses its benefits andhgealle

1 Introduction

When assembling independently developed components, fteis the case that their
public interfaces do not fit to each other. If components oafye adjusted directly
(e.g., when assembling third-party components), an adapgss to be placed between
them to bridge interface incompatibilities. Gamma et glp[11.39] describes the adapter
design pattern by 4 collaborating roledient, Target, Adapter andAdaptee) and shows
a possible pattern implementation as a mapping of thess toleasses.

For our running example, assume a university managemeeisys/MS), in which
the concept of student is modeled by interf@teudent and implemented by class
St udent | npl . Among other interface methods, the class implementge¢hdés ades
method that retrieves subjects and grades of the studentdrfile used for serializa-
tion. This method is used also in the implementatiopiof nt Gr ades that prints out
subjects and grades of a student.

Later, due to new system requirements, it is decided to bophisticated reporting
component that replaces the simple functionality prewioresalized directly bySt u-
dent | npl . Moreover, UMS is integrated with a persistence componiegt is now
responsible for saving and retrieving data. To retrieveestii gradesSt udent | npl
must now call the persistence component to get data. To ghiginformation,St u-
dent | mpl must wrap it before sending to the reporting component, Useethe signa-
ture of printing method irst udent (expected by existing clients) differs from the one
of the reporting componenRépor t . pri nt Report expecting report component’s
specificDat aRow as its parameter). S&t udent | npl must translate between the
two interfaces and becomes effectively a class-baseded@gure 1).

Figure 2 shows internals of thpgg i nt G- ade method ofSt udent | npl that per-
forms the actual translation. Using student identity (fandicity, "this”), the method
constructs the corresponding SQL query, retrieves data fihe persistence component
using theget G ades method and fills them into the type required by the reporting
component. In addition, now thget Gr ades method (code not shown) itself is an

UMS Reporting Component
Client 2 Report

Student
Y CAdaptee 1
Target 1 %l
[Target2 et +printReport(data: DataRows) : void

+printGrades() : void
+getGrades() : Map

Z
: Persistence Component
Studentimpl DB2Component
Adapter l_j CAdaptee 2
Adapter 2_)

+printGrades() : void +retrieve() : ResultSet

+getGrades() : Map

Fig. 1. Class-based adapter. Classes are annotated with roles these classeeithp

adaptation method callinget r i eve of the newly introduced persistence component
and converting itlkesul t Set to theMap of the St udent interface being adapted.
The main drawback of this class-based adapter realizatitimi the code respon-
sible for different tasks is highly intertwined. For inst@nin lines 11 and 12 the code
realizing logic for the data retrieval and for reporting cems is joined. When real-
izing this adapter, developers need to consider in fact tégcdypes and semantics
of all three domains involved (i.e., of the report and péesise components and of
the UMS itself). In real life scenarios with possibly manyeimelated components be-
ing integrated, such inability to separately realize eamficern increases the time and

Report report;
DBComponent db;
public void printGrades () {
[/ construct an QL query for this student
String query = createSQLQueryByTimeliis);
[l retreive student subject—mark pairs
ResultSet srs =this.getGrades(query);
/I'fill in and send the report data
DataRow reportData =new DataRow ();
while (srs.next()) {
reportData.add(srs.getString('’'subject’”));
reportData.add(srs.getString (''mark’’));

}
report.printReport(reportData);

}

Fig. 2. Implementation ofst udent | npl . pri nt Gr ades

error-proness of adaptation. Even more important, an adapitself a software artifact
inevitably requiring maintenance. In case the adaptersiedoke modified (for example,
to improve its performance), developers need to understsintten extremely complex
implementation.

The situation aggravates furthermore when the publicfetes of components, on
which the adapter depends, evolve as well. In our runningngie an upgraded ver-
sion of the report component may change the signatuRepbrt . pri nt Report.
For example, in an older component version, its void methed thirowing an excep-
tion in case of a printing failure and in the new version thehud returns a new type
Docunent Pri nti ng containing details of method’s execution. To accommodae t
adapter to these changes, its whole code needs to be théyoogsstigated and un-
derstood. Often this needs to be done by developers othenstlie adapter’s initial
developers. Because the adaptation decisions are madedégp@n each other in the
code, a bug made when adjusting one component may propatestoanlapter’s parts.
For instance, ijet Gr ades of the persistence component evolves and a bug is made
when adjusting to its changes, this bug will also be refleatethe behavior of the
adapter'spri nt G ades.

Allin all, these maintenance problems stem from the fadtttimadaptation concern
mentally modeled by four roles of [1] is lost in transitionthe class-based adapter im-
plementation. Presumably, preserving these roles ekplitihe implementation brings
benefits comparing to class-based adaptation. Using adgegupporting roles as first-
class citizens, we investigate the feasibility, benefits dmawbacks of role-based adap-
tation.

2 Role-based Adaptation

To implement the role-based adapter of our running examygeayse a relatively new
yet rich language ObjectTeams/Java—a stable well-testel edeension supporting
roles and collaborations [2]. However, since the languamesists of several specific
terms that need lengthy explanation, in this paper we refirmm its specific termi-
nology. Instead, taking into consideration the run-timgpansibilities, we dissect the
concept of the Adapter role intm- and Out-(sub)roles. Similarly to conventional as-
pects, an In-role is responsible for handling the incomiatadnto the adapter and an
Out-role is in charge of passing data flow further to the askapt

Figure 3 depicts how role-based adaptation can be realirexiif running example.
Each role is played by (instances of) and mapped to a sina$s cThe key difference to
the class-based adapter is that Adapter is realized dirasth role. As a consequence,
it is now possible to define a separate adapter role for eatimescial component to
be integrated. Additionally there is another separate fmeeach target class. Note,
that In- and Out-roles for each adaptation role in conceenr@alized separately and
are encapsulated in the corresponding role realizatiarsgpving thus adaptation de-
cisions. Regardless of how they are actually mapped toedamsd boil down to the
execution code, these explicit roles can be maintained-athaand do not intertwine.
Moreover, adding new adapter’s responsibilities (e.gadapt yet another commercial
component) becomes easier due to the separation of adeptatncerns. In a class-

UmMs Reporting Component
H Client 2
Student V Report
C Target 1 j ..{Adaptee 1
 Target2)< - -
+ printGrades() : void +printReport(data: DataRows) : void
+getGrades() : Map

Adapter Persistence Component
s Y Adapter R,

{ (" Student-in) Report-Out DBComponent

> printGrades < printReport Adaptee 2

i |> getGrades P —— ~(pdepiee 2)

Persist-Out +retrieve() : ResultSet
< retrieve

Fig. 3. Role-based adapter. Roles annotate classes playing those roles.

based realization, such separation is only possible ussgdamplex role object pattern
[3], which is in fact a workaround of language limitationsréalize roles directly.

3 Challengesand Limitations

An important conceptual issue to be mentioned is that apglyble-based adaptation
to adapt class-based components reduces potential powgrusé object-based design
(as envisioned by Reenskaug [4]). In our case it is not pessibrealize the pattern
only in roles, because at least some of them need to be bousctual components’
classes. In particular, in a strongly-typed class-basstkenry, at least the target class
needs to be specified statically.

A limitation inherent to ObjectTeams/Java is that a role @aly have a single base
class. As a consequence, the Adapter role cannot be redlzedtances of different
classes at run-time. This decreases reuse, because awégreonce defined, can only
be used for a single class. If another class needs the sarogofuadity, another role
needs to be defined again, possibly duplicating the sameimggitation.

The major practical challenge we stipulate regarding balsed adaptation is that
the learning curve implied the application of a new techaiguay not be accepted
by developers. Since developers are in general reluctalgatm new programming
languages and, even more important, have to admit a cergireel of obsoleteness of
their conventional class-based adapter realizationnivi€lear, whether such technique
can be easily accepted by them.

4 Related Work

Technically most closely related work to our approach is efggnans and Aksit [5]
on composition filters—a technique enhancing ordinary dbjedth input and output

filters for incoming and outgoing messages correspondirttdgh filter may reject or
accept a message using certain acceptance conditions.d§sage is accepted, it can
optionally be altered and forwarded to a target. The tatgetfican be chosen using
certain selection logic. However, there is no discussioativer their approach is appli-
cable for adaptation in case of component integration.

5 Conclusion

Using conventional class-based realization of adaptedsi®ften to highly complex
adaptation code that is hard to understand, maintain arideeViorole-based realization
of adapters in a language supporting roles explicitly maysaterably reduce code
complexity due to the separation of adaptation concerrgingsulting implementation.
Even more important, such realization preserves initiapéation decisions made and
contribute furthermore to the maintainability of adapters

We will further investigate the frontiers of role-base addipn, its practical real-
ization, advantages and limitations in one of the authoeghlor thesis (currently in
progress) [6].

References

1. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Pattelasients of Reusable
Object-Oriented Software. Addison-Wesley, Reading, Massachu$egSs)

2. Herrmann, S., Hundt, C., Mosconi, M.: ObjectTeams/Java LagggDefinition - version 1.0.
Technical Report 2007/03, Technical University Berlin (2007)

3. Baumer, D., Riehle, D., Siberski, W., Wulf, M.: The role object patten: PLoP’97: Pro-
ceedings of the 4th Pattern Language of Programming Conferer®&.)(1

4. Reenskaug, T.: Working with Objects: The OOram Software Engimgétethod. Manning
Publications (1996)

5. Bergmans, L., Aksit, M.: Principles and design rationale of compasiifiers. In R. Filman,
T. Elrad, S.C.M.A,, ed.: Aspect-Oriented Software Development.digah-Wesley (2004)
ISBN 0-32-121976-.

6. Gotz, S.: Role-based adaptation (2008) http://www1l.inf.tu-dreddén.
59288421 /papers/goetz-gb-thesis.pdf.

